

ROLES OF EXISTING TECHNOLOGOLGIES AND ADJUVANTS

Sustainable Influenza Vaccine Production Capacity
Stakeholders' Workshop
January 11, 2010

Robin Robinson, PhD
Director
HHS/ASPR/BARDA

Pandemic Influenza MCM Supply-Demand Gap Closure

Reduce Demand: Pre-Pandemic Vaccines, Community Mitigation, Antivirals, Vaccines, Masks Increase Capacity: Ventilators, Oxygen, Antivirals, Pandemic Vaccines, Masks,

Health & Human Services Office of the Assistant Secretary for Preparedness and Response (ASPR)

Egg-based Vaccines

- Provide > 99% of current seasonal & pandemic influenza vaccine manufacturing capacity globally
- Vaccine safety and effectiveness history > 50 years
- Incumbent industry
 - Virus reference strains
 - Vaccine manufacturing processes & facilities
 - Vaccine potency & immunogenicity assays
 - Vaccine acceptance
- Specialized manufacturing facilities for bulk production
- Vulnerabilities
 - Avian pathogens
 - Egg supply
 - Virus strain growth
- Co-existence with newer vaccine technologies

Health & Human Services Office of the Assistant Secretary for Preparedness and Response (ASPR)

Adjuvants

- Aluminum hydroxide provides limited dose-sparing effects
- Oil-in-Water adjuvants
 - Dose-sparing effects
 - Cross-reactive immunity among virus strains
 - Enhanced priming-effects
 - Limited licensure in wide populations
 - Variable vaccine acceptance
 - H1N1 pandemic effects
 - IP issues
- Other adjuvants
- Primary means to achieve sustainable influenza vaccine production to accommodate facility size demands for seasonal vaccine & future pandemic surge capacity needs